Kurniadi and H. Ishi, “Harmonic analysis for 4-dimensional real Frobenius Lie algebras,” Springer Proceeding in Mathematics & Statistics, 2019.
E .Kurniadi and H. Ishi, “Duflo-Moore Operators for Square-Integrable Representations of 4-Dimensional Real Frobenius Lie Groups”, preprint (2019).
Kurniadi, “Derivation Pada Aljabar Lie Frobenius Riil Berdimensi 4 dan Sifat Elemen Utamanya”, preprint (2019).
Education
Ph.D / Doctor of Mathematical Science : 2019 Graduate School of Mathematics of Nagoya University, Japan. Dissertation : Harmonic Analysis for Finite Dimensional Frobenius Lie Algebras.
M.Si / Master Sains : 2007 Department of Mathematics, of Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia Thesis : Aljabar Atas Suatu Lapangan dan Dualitasnya.
S.Si / Sarjana Sains : 2005 Department of Mathematics, of Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran. Thesis : Hubungan antara modul semi sederhana dan modul sangat semi sederhana.
Seminar
October 28 – 29, 2019 : (Invited speaker) Square-Integrable Representations of R^2⋊(R_+⨁ SO(2), School Mathematical Modelling and Simulation, UIN Syarif Hidayatullah Jakarta.
Research Project
Ph.D Student Project (2016) : Structure of coadjoint orbits of matrix Lie groups.
Ph.D Student Project (2017) : Representation theory of Lie groups and related topics.
Ph.D Student Project (2018) : The orbit method and the classification of unitary representations.